
Cooperation and Codenames: Understanding Natural Language Processing via
Codenames

Andrew Kim, Maxim Ruzmaykin, Aaron Truong, Adam Summerville
California State Polytechnic University, Pomona

andrewhkim@cpp.edu, mruzmaykin@cpp.edu, aarontruong@cpp.edu, asummerville@cpp.edu

Abstract
Codenames – a board game by Vlaada Chvátil – is a game
that requires deep, multi-modal language understanding. One
player, the codemaster, gives a clue to another set of players,
the guessers, and the guessers must determine which of 25
possible words on the board correspond to the clue. The na-
ture of the game requires understanding language in a multi-
modal manner – e.g., the clue ‘cold’ could refer to tempera-
ture or disease. The recently proposed Codenames AI Com-
petition seeks to advance natural language processing, by us-
ing Codenames as a testbed for multi-modal language under-
standing. In this work, we evaluate a number of different nat-
ural language processing techniques (ranging from neural ap-
proaches to classical knowledge-base methods) in the context
of the Codenames AI framework, attempting to determine
how different approaches perform. The agents are evaluated
when working with identical agents, as well as evaluated with
all other approaches – i.e., when they have no knowledge
about their partner.

Introduction
Games have been a popular test-bed for Artificial Intelli-
gence since the inception of the field – with chess being used
as a testbed for AI since 1957. Competitions based on games
have largely been focused on games as an arena for adversar-
ial competition – develop a bot that is able to beat the most
other bots. Recently, there have been competitions devoted
to cooperation in games, but this cooperation is typically not
of a form like standard human cooperation. Codenames (by
Vlaada Chvátil (Chvátil 2015)) is a game focused on natu-
ral language understanding – the board is composed of 25
words – and the goal is for a team of codemaster/guesser(s)
to find all of the words associated with their team. The code-
master is given hidden information about the words on the
board that are owned by their team, and it is up to produce
single word clues so that their team of guessers can cor-
rectly identify their words. The clues must be semantically
related to the words. The recently announced Codenames AI
Competition (Adam Summerville 2019) uses Codenames as
a testbed for natural language understanding. Codenames is
unique amongst game AI competitions in that it requires:

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1. Deep, multi-modal language understanding

2. Assymetric cooperation

Other game AI competitions have touched on these as-
pects – but not in concert – most notably, the Text-Based AI
Competition(Atkinson et al. 2018) and The Hanabi Com-
petition(Canaan et al. 2018). The Text-Based AI Competi-
tion presents a text-based adventure game environment for
agents to explore – and potentially solve. This involves nat-
ural language understanding and common-sense reasoning
not required by the other competitions. On the other hand,
the Hanabi Competition is focused on cooperation with un-
known agents in a game where players work towards a
shared goal of beating the game.

This work uses the Codenames AI framework to assess
the capabilities of different natural language processing ap-
proaches:

• WordNet – using a range of path similarity metrics

• word2vec

• GloVe

by assessing how well the different approaches work as
both codemaster and guesser. This assessment looks at how
well the bots do when paired with a twin – a bot using the
same underlying technique – and with all non-twin partners
as well. The codemasters are tested at a range of different
of sensitivities, to see how well they trade off accuracy for
speed. This work is a novel contribution to the fields of game
playing and natural language understanding for

• the development of multiple Codenames AI bots for both
the roles of codemaster and guesser

• the evaluation of how well different natural language pro-
cessing cooperate with each other

In the rest of the paper we will first discuss how this work
fits in to the fields of natural language understanding and
game playing. Coupled with the rules of Codenames and the
rules of the Codenames AI competition. We then describe
the different techniques used and the structure of the bots.
Finally we will assess the results of a round-robin tourna-
ment of all pairs of guessers and codemasters.

Related Work
Game competitions have been a popular test-bed for a
variety of AI techniques. These have ranged from strat-
egy games in the Starcraft AI Competition (Churchill
2018), to first-person shooters in the VisDoom competition
(https://www.crowdai.org/challenges/vizdoom-2018 2018).
More recently, there has been interest in games that require
either textual understanding, cooperation, or epistemic rea-
soning – in the Text-Based AI Competition(Atkinson et al.
2018), The Hanabi Competition(Canaan et al. 2018), and
One Night Ultimate Werewolf (Eger and Martens 2018) –
respectively. The recently announced Codenames AI com-
petition requires textual understanding, cooperation, and
epestemic reasoning. The codemaster and guesser need to
understand the words being presented to them, they need to
work towards their common goal, and – perhaps most im-
portantly – they need to understand what their partner un-
derstands, so that they can successfully cooperate. Work by
Bard et al. used reinforcement learning to train Hanabi play-
ing bots (Bard et al. 2019). They found that bots that had a
paired partner were able to play nearly perfectly, but when
paired with a partner that did not have the same commu-
nication strategy the bots performed horribly, with nearly no
chance of winning – demonstrating the challenge of working
with unknown teammates when no external communication
is allowed.

While, to our knowledge, this work is the first to compare
different word similarity and word embedding approaches
in the context of games (and more specifically, Codenames)
– this is not the first work to compare them in other nat-
ural language processing contexts. Naili et al. compared
Word2Vec, GloVe, and LSA vectorial semantic approaches
in the domain of topic segmentation – finding that both
GloVe and Word2Vec outperform LSA (Naili, Chaibi, and
Ghezala 2017). Rücklé et al. compared GloVe, Word2Vec,
and concatenated combinations thereof in a number of dif-
ferent contexts – Argumentation Mining, Sentiment Classi-
fication, Opinion Polarity, and Question-Type Classification.
They found that concatenations of GloVe and Word2Vec
worked the best – meaning that while the approaches are
similar – they each have relative merits that can improve
upon each other (Rücklé et al. 2018). In his masters the-
sis Handler uses WordNet to assess the types of relation-
ships found by word2vec – finding that word2vec finds more
similarity between synonyms, hypernyms, and hyponyms –
ahead of meronyms and holonyms (e.g. it finds more simi-
larity between ‘wheels’ and ‘tires’ than ‘wheels’ and ‘car’).
However, none of these approaches assess how well the dif-
ferent approaches agree with each other in terms of similar-
ity – which our work addresses.

Codenames
Codenames is an asymmetric cooperative board game where
a team – composed of a codemaster and some number of
guessers – work to find their hidden words as quickly as pos-
sible. Table 1 shows an example board from the game. The
colors represent the hidden information that the codemasters
are privy to:

DAY SLIP SPINE WAR CHICK
HAND WALL AMAZON DEGREE GIANT

CLOAK STREAM CHEST HAM DOG
FALL CENTAUR EMBASSY GRASS FLY
OIL COLD HOSPITAL MARBLE CAPITAL

Table 1: An example Codenames board. Bold+Red words
are those for the red team, Italic+Blue words are for the blue
team, gray words are civilians, and the remaining word is the
assassin.

• Gray – A civilian – an unaffiliated card that ends the turn
when selected by a guesser

• Black – The assassin – an unaffiliated card that instantly
causes the guessing team to lose the game

• Blue/Red – The secret agents – the affiliated cards that the
teams are trying to select

The game has the following structure:

1. The team with the most words goes first.
2. The codemaster of the current team gives their clue – a

single word and a number.
3. The guessers of the current team select a clue – if at any

time they choose a card that does not belong to their team,
their turn ends.

4. The guessers can choose to repeat 3. up to the given num-
ber plus 1.

5. Play passes to the opposing team and the game goes to 2.
The rules of the game disallow the codemaster from say-

ing more than a single word as a clue, saying a clue that is
the word itself, and a clue that is too similar to a word on the
board.

For example, the red team would start in the example
setup of table 1. The codemaster for the red team might
wish to use a clue to link WATER and AMAZON – per-
haps “river” or “basin” – but the assassin word STREAM
confounds that plan – so perhaps they choose “ARCHER 3”
– hoping their guessers select WAR, AMAZON, and CEN-
TAUR. This demonstrates one of the key challenges of Co-
denames – most of the words have multiple meanings – as
evidenced by the above example. E.g., AMAZON could re-
fer to the river, the company, or the mythical civilization.

While Codenames is a competitive game, it can also be
played in a solitaire style, which is the basis for the com-
petition. The competition has a team of bots competing to
complete the board in as few turns as possible. There is no
opposing team, with the game ending in one of two states:

1. Win – The team successfully clears the board – their score
being the number of turns it took to complete the board

2. Lose – The team incorrectly selects the assassin or
chooses all of the opposing team’s words before their
own, their score will be 25

The competition allows for competitors to enter either a
guesser, a codemaster, or both. The competition has three
tracks:

• Paired Guesser/Codemaster

• Solo Guesser
• Solo Codemaster

If a competitor enters both a guesser and codemaster, they
can compete in the paired track, where their guesser will be
paired with their codemaster, and they will compete against
other such teams.

Furthermore, the guesser and codemaster bots are also be
entered into the solo competition where they will be paired
with other entrants, seeing how well they can communicate
and cooperate when they do not know their partner.

In this work, we analyze different natural language pro-
cessing techniques in the context of the Codenames AI com-
petition – seeing how well paired codemasters and guessers
can perform, as well as how non-paired teams perform. The
following section details the overall approach for the bots, as
well as the different natural language processing techniques.

Bot Methodology
All of the bots used in this analysis follow the same basic
approach – respective of the role of codemaster or guesser
– , regardless of the natural language processing technique
used. Pseudocode for the codemaster is:

Algorithm 1 Codemaster
1: procedure PRODUCECLUE
2: R← []
3: for r w ∈ red words do
4: for w ∈ words do
5: R[r w][w]← D(r w,w)

6: B← []
7: for b w ∈ bad words do
8: for w ∈ words do
9: B[b w][w]← D(b w,w)

10: Ci ← 0
11: best← null
12: d←∞
13: for i ∈ (1..|red words|) do
14: for rc ∈ Combination(red words, i) do
15: for w ∈ words do
16: wd ←∞
17: for b w ∈ bad words do
18: if B[b w][w] < wd then
19: wd ← B[b w][w]
20: dr ← 0
21: for r w ∈ rc do
22: if R[rw][w] > dr then
23: dr ← R[rw][w]

24: if dr < d,
25: dr < wd

26: dr < t then
27: d← dr
28: best← w
29: Ci ← i

30: return best, Ci

In lay terms, the bot looks through all combinations of
red words from size 1 up to the number of the remaining red

words. The bot chooses the best word (assuming the sup-
plied distance function D supplies a lower distance for more
similar words) subject to:
• The distance between the clue and any of the “bad words”

(i.e. the blue, grey, or black words) is further than the clue
and the worst of the red target words

• The distance between the worst red target word is smaller
than the supplied threshold, t
The supplied threshold t (low= 0.3, medium= 0.5, high=

0.7) limits how aggressive the bot is. The words come from
a list of the 10,000 most common English words, with all
words that lemmatize to the same word condensed into the
lemmatized form (e.g. rub, rubs, rubbing, etc. all lemmatize
to rub).

The guesser is much simpler than the codemaster and
works as follows:

Algorithm 2 Guesser
1: procedure MAKEGUESS(clue)
2: best← null
3: d←∞
4: for word ∈ board do
5: if D(word,clue) ¡ d then
6: d← D(word,clue)
7: best← word
8: return best

Simply speaking, it looks over all of the words on the
board, and selects the one that most closely matches the clue.

While the broad bot infrastructure is the same for all of
the bots, the internal workings for D(w1, w2) differ for the
bots. The following sections detail how the different natural
language techniques operate.

WordNet
WordNet is a venerable Natural Language Processing frame-
work that represents words in a graphical structure (Miller
1995). All words in WordNet are composed of synsets (short
for synonym sets) – a set of meanings that the word might
take on. E.g., dog has the synsets for referring to a canine,
a hotdog, the action of chasing, and colloquialisms (“you
dirty dog”, “you lucky dog”, etc.). These synsets then relate
to each other through four different types of semantic rela-
tionships:

1. Hypernomy – A hypernym of a word is one that is more
general – Animal is a hypernym of Dog

2. Hyponomy – A hyponym of a word is one that is less
general – Poodle is a hyponym of Dog

3. Meronomy – A meronym of a word is one that the word
is a part of – Tail is a meronym of Dog

4. Holonomy – A holonym of a word is one that contains the
accommodated word – Animal Kingdom is a holonym of
Dog
These relationships can then be traversed to find the sim-

ilarity between two words; however, a number of different
traversals are possible. For this work we considerred:

Path Similarity – A score for how similar two word
senses are, based on the shortest path that connects the
synsets in the (hypernym/hypnoym) taxonomy defined as:

1
distance+1

Leacock-Chodorow Similarity – A score that uses the
shortest path as in Path Similarity and the maximum depth
of the synsets in the taxonomy, defined as (Leacock and
Chodorow 1998):
− log(p

2d)
where p is the shortest path length and d the taxonomy depth.

Wu-Palmer Similarity – A score based on the depth of
the two synsets in the taxonmy and their deepest ancestor
node – their Least Common Subsumer (LCS) – defined as
(Wu and Palmer 1994):

2 ∗ depth(lcs)
depth(s1)+depth(s2)

Resnik Similarity – A score based on the Information
Content (IC) of the LCS. The IC is defined as (Resnik 1999):
− log(px)
Where px is the probability that a randomly selected word

from a corpus enacts a concept in WordNet (e.g. the word
‘dog’ counts for the words ‘dog’, ‘mammal’, ’animal’, ’or-
ganism’, and ‘entity’). For this work, we used the Brown
corpus for all IC related measures.

Jiang-Conrath Similarity – A score based on the IC of
the LCS and that of the two input synsets, defined as:

1
(IC(s1)+IC(s2)−2IC(lcs))

Lin Similarity – A score based on the IC of the LCS and
that of the two input synsets, defined as (Lin 1998):

2IC(lcs)
IC(s1)+IC(s2))

As a note, all of these measures are defined such that
more similar words have a higher similarity. Since the pseu-
docode shown before assumes that the similarity measures
are distances (i.e., lower being better), it is necessary to in-
vert the measures (or flip the signs of all comparisons). For
this work, the Natural Language Toolkit (NLTK) was used
to access the WordNet database (Bird 2006).

Vectorial Semantics
Vectorial semantics are an NLP approach that relies on em-
bedding words in a high (typically 100+) dimensional vector
space. These approaches can come to these word vectors in
different ways, but once the word vectors have been found,
they can be used in similar ways. Most notably, vector math
operations can lead to different semantic operations – e.g.,
A − B + C = D enacts “A is to B as C is to D”, i.e.,
analogy. Similarity for vectorial semantics operates by find-
ing the word that is closest given some distance metric for
the vector space. There are infinitely many possible distance
metrics that could be used, ranging from the Euclidean L2 or
Manhattan L1 norm to more exotic norms, but the most com-
monly used distance is the cosine distance, e.g. the cosine of
the angle between the two vectors. This is most commonly
defined as:

1− w1·w2

||w1||2||w2||2
I.e., One minus the dot product of the two vectors, after nor-
malization, the measure is 0 for identical vectors, 1 for or-
thogonal vectors, and 2 for exactly opposing vectors.

Of course, as mentioned above, while the process of
finding the similarity using word vectors is the same once
the word vectors have been derived, the details of how
to get the word vectors have specific differences. For this
work, we considered two different word vector approaches
– word2vec and GloVe – which we will now discuss.

Word2Vec
Word2Vec (Mikolov et al. 2013) is a commonly used word
vector training approach that actually comprises two differ-
ent approaches – the Continuous Bag Of Words (CBOW)
and the Skip-Gram models. The two approaches use a simi-
lar idea, given a window in a text – use a word and its con-
text to train a neural network – the weights of which give the
word vectors. E.g., given the sentence “The quick brown fox
jumped” the word might be “brown” with the corresponding
context [“The”, “quick”, “fox”, “jumped”]. The difference
between the CBOW and Skip-Gram models come from how
the word and contexts are used – the CBOW model takes the
context as the input and tries to predict the word, while the
Skip-Gram model takes the word and tries to predict the con-
text. For this work, we used a 300 dimensional pre-trained
Skip-Gram model trained on the Google News corpus.

GloVe
“Global Vectors for Word Representation” (GloVe) is an-
other approach for deriving word vectors from a corpus
(Pennington, Socher, and Manning 2014). The key insight
to GloVe is that probability ratios for word carry the type of
information that is desired from vectorial semantics. E.g.,
given Pr(x|‘ice’)/Pr(x|‘steam’) the ratio is high for words
more associated with ice like ‘solid’, very low for words
more associated with steam like ‘gas’, close to 1 for unre-
lated words like ‘fashion’, and close to 1 for similarly re-
lated words like ‘water.’ Given this insight, GloVe is trained
by a linear regression that tries to learn weights such that the
weights associated with a word try to predict the log of the
co-occurrence counts of the word and its contexts:∑V

i,j=1(wi + bi − logXij)
2

where w, b are the weights and bias associated with word i,
Xij is the co-occurrence count for word i and word j, and
V is the size of the vocabulary. For this work we considered
the 50, 100, 200, and 300 dimensional GloVe embeddings.

As discussed in the related work, it has been demonstrated
that in certain contexts the concatenation of word2vec and
GloVe vectors can improve performance (Rücklé et al.
2018), so we too consider them.

Results
To assess the capabilities of the different NLP techniques,
we ran a round-robin tournament of 30 games for all pairs
of codemaster and guesser (the same 30 boards were pre-
sented to all pairs). As a note, we found that the WordNet
based codemasters were both extremely time inefficient and
mostly inscrutable to us for the chosen clues, so we did not
consider them in the tournament – perhaps in future work
they can be more fully assessed. For each of the codemasters
we considered 3 different threshold levels, to see how the

Figure 1: The average (left) and minimum (right) number of turns that the different pairs take to finish the game. These turn
counts are based only on games that are won, ignoring the games where the team loses. Lighter cells are better than darker. We
see that the more aggressive thresholds lead to better min and average turn counts – with 3 turn wins not being uncommon. The
more conservative thresholds lead to 7 or 8 turn games – 1 clue per turn. We notice that while the various vectorial semantic
approaches work well together, the WordNet based approaches universally do not play well with vectorial semantic approaches.

Figure 2: The win percentages across the tournament for the codemaster-guesser pairs. The paired twins have a 100% win
rate, as expected. Also, as the threshold increases the win rate decreases – again, as expected as the lower threshold means a
more conservative/less aggressive codemaster, one that is more likely to win (at the cost of taking more turns). Universally, the
WordNet based guessers do very poorly – never breaking an above 50% win rate.

different approaches trade off speed and accuracy – a lower
threshold being more conservative. The number of turns, av-
erage and minimum, can be seen in figure 1, while the win
rates can be seen in figure 2.

Unsurprisingly, the codemasters that are paired with their
corresponding guesser achieved a 100% win rate. Some-
what interestingly, we see that word2vec codemasters do
worse as the dimensionality of the GloVe based guessers in-
creases, and vice-versa. Seemingly, low-dimensional GloVe
corresponds to high (300) dimensional word2vec – which
is something that, to our knowledge, has not been observed
elsewhere. Concatenating word2vec and GloVe results in the
best results across the board – the concatenated word2vec
and 300d GloVe has ≥ 90% win rate across the vecto-
rial semantic based approaches (higher than all other tested
codemasters). However, the vectorial approaches do very
poorly with the WordNet based approaches – topping out
at a 36.67% win rate and dipping to a 3.3% win rate. While
this study did not have a human component, our personal
analysis found that the WordNet based approaches tended
to choose clues in ways that were hard to justify, while the
vector based approaches were often more reasonable. This
is obviously not hard, obviously demonstrated proof, but
the overall agreement between the vector based approaches
in contrast to the WordNet demonstrated approaches would
seem to favor vectorial machine-learned approaches.

The turn rate results only show goes where the team won.
As with win-rate, the concatenated word2vec + GloVe per-
formed best here, with the 300d combined with Word2Vec
averaging a 6.9 turns needed to win any given game. Un-
surprisingly, the more aggressive thresholds led to faster
win times. In contrast to the win-rate results, the lower di-
mensional GloVe vectors required less turns than that of
higher dimensional GloVe vectors when concatenated with
word2vec – for the Codemasters. Even more interestingly,
the opposite effect is found across the guessers, with the
higher dimensional GloVe-concatenated guessers perform-
ing better than the lower dimensional concatenated guessers.
Perhaps this is due to the seeming result that low dimen-
sional GloVe corresponds well with word2vec – leading to
games where the 2 approaches are simpatico, but further
study is required to determine exactly why the higher di-
mensional GloVe results are more stable, yet less optimal,
than the lower dimensional GloVe vectors.

Looking at the minimum number of turns, the minimum
across all tested guessers and codemasters was 3 turns – av-
eraging 2 2

3 words a turn – which to the authors seems to
be an unamazing, yet very good game for Codenames. The
concatenated (low-dimensional) codemaster averaged 4.7
minimum turn games across all guessers – and on average
a 7.1 turn game – a full turn faster than the next closest
codemasters (the 100d GloVe and 100d Glove + word2vec
at 8.1 turn games). Interestingly, the low dimensional, high-
threshold concatenated codemaster performed decently with
the WordNet based guessers. In the best-case – an average
7 turn game across the WordNet guessers. That being said,
the average case for the WordNet guessers was at best 10.5
turns – meaning that they missed at least 2 on average.

Obviously, the bots that are epistemically paired (i.e. the

twin codemaster-guesser pairs) perform the best, with 100%
win rates and low (3.2 turn) number of turns required to
find all words. Across the field, we see that concatenating
word2vec and GloVe performs better than either on their
own; However, the dimensionality of the GloVe vectors used
has different tradeoffs – high-dimensional codemasters have
the best win-rate, while low-dimensional codemasters have
the best win times. Interestingly, for the guessers increas-
ing dimensionality leads to both higher win-rates and lower
number of turns. This would indicate that a competitor in the
competition would do best to consider a mixed codemaster-
guesser team to pair best across the field.

Conclusion and Future Work
In this paper we have detailed two different bot frameworks
for the Codenames AI competition – a codemaster and a
guesser – and have analyzed these both with a wide vari-
ety of Natural Language Processing backends, ranging from
classical knowledge-base approaches deriving from Word-
Net and from modern machine-learned vectorial semantics
approaches, word2vec and GloVe. We analyzed these frame-
works across a round-robin tournament, pairing all code-
masters (with a number of different aggressiveness thresh-
olds) and all guessers – to see how well these different ap-
proaches can cooperate with each other. We found that the
vectorial semantics based approaches universally worked
well with each other – win rates ¿80% on average – while
the WordNet based approachs universally performed poorly
with the vector based approaches – win rates ¡40%, and
that concatenating word2vec and GloVe vectors has the best
overall results – working well with stand-alone word2vec,
stand-alone GloVe, and concatenated approaches. Interest-
ingly, we found that increasing the dimensionality of the
codemaster leads to more wins – at the cost of speed.
Conversely, we found that increasing the dimensionality of
the guesser leads to both increased win percentage and in-
creased speed – leading us to believe that Codenames’ AI
entrants utilizing these approaches should have a mixed
guesser-codemaster team, in terms of dimensionality.

In the future, we would like to examine more recent vec-
torial semantics approaches – namely, ELMO (Peters et al.
2018) and BERT (Devlin et al. 2019). Both create contex-
tual word vectors albeit via different approaches – ELMO
uses a Long Short Term Memory Recurrent Neural Network
(LSTM RNN) and BERT is instead based off of the Trans-
former (Vaswani et al. 2017). Given the multi-modal word
meanings inherent in Codenames – contextual word vectors
would seem to be a powerful tool. These two approaches
could lead to more nuanced codemasters and guessers –
more in line with human reasoning. Along those lines, we
would like to conduct a human study to assess which of
the approaches best align with humans. Finally, these bots
are very simplistic in their play – a more nuanced approach
would pay attention to how their partners respond.

References
Adam Summerville, Andrew Kim, M. R. A. T. 2019.
Codenames AI Competition [Accessed on June 10,

2019]. https://sites.google.com/view/the-codenames-ai-
competition.
Atkinson, T.; Baier, H.; Copplestone, T.; Devlin, S.; and
Swan, J. 2018. The Text-Based Adventure AI Competition.
arXiv preprint arXiv:1808.01262.
Bard, N.; Foerster, J. N.; Chandar, S.; Burch, N.; Lanctot,
M.; Song, H. F.; Parisotto, E.; Dumoulin, V.; Moitra, S.;
Hughes, E.; et al. 2019. The hanabi challenge: A new fron-
tier for ai research. arXiv preprint arXiv:1902.00506.
Bird, S. 2006. Nltk: The natural language toolkit. In COL-
ING ACL 2006, 69.
Canaan, R.; Shen, H.; Torrado, R.; Togelius, J.; Nealen, A.;
and Menzel, S. 2018. Evolving agents for the hanabi 2018
cig competition. In 2018 IEEE Conference on Computa-
tional Intelligence and Games (CIG), 1–8. IEEE.
Churchill, D. 2018. AIIDE StarCraft AI
Competition [Accessed on June 10, 2019].
https://www.cs.mun.ca/ dchurchill/starcraftaicomp/.
Chvátil, V. 2015. Codenames. Czech Games.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2019.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. Proceedings of NAACL-HLT 2019.
Eger, M., and Martens, C. 2018. Keeping the story straight:
A comparison of commitment strategies for a social deduc-
tion game. In Fourteenth Artificial Intelligence and Interac-
tive Digital Entertainment Conference.
https://www.crowdai.org/challenges/vizdoom-2018. 2018.
VizDOOM Competition [Accessed on June 10, 2019].
Leacock, C., and Chodorow, M. 1998. Combining local
context and wordnet similarity for word sense identification.
WordNet: An electronic lexical database 49(2):265–283.
Lin, D. 1998. An information-theoretic definition of simi-
larity. International Conference on Machine Learning 98.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Ef-
ficient estimation of word representations in vector space.
Proceedings of the International Conference on Learning
Representations (ICLR 2013).
Miller, G. A. 1995. Wordnet: a lexical database for english.
Communications of the ACM 38(11):39–41.
Naili, M.; Chaibi, A. H.; and Ghezala, H. H. B. 2017. Com-
parative study of word embedding methods in topic segmen-
tation. Procedia computer science 112:340–349.
Pennington, J.; Socher, R.; and Manning, C. 2014. Glove:
Global vectors for word representation. In Proceedings of
the 2014 conference on empirical methods in natural lan-
guage processing (EMNLP), 1532–1543.
Peters, M. E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark,
C.; Lee, K.; and Zettlemoyer, L. 2018. Deep contextualized
word representations. In Proc. of NAACL.
Resnik, P. 1999. Semantic similarity in a taxonomy: An
information-based measure and its application to problems
of ambiguity in natural language. Journal of artificial intel-
ligence research 11:95–130.
Rücklé, A.; Eger, S.; Peyrard, M.; and Gurevych, I. 2018.
Concatenated power mean word embeddings as univer-

sal cross-lingual sentence representations. arXiv preprint
arXiv:1803.01400.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. In Advances in neural information
processing systems, 5998–6008.
Wu, Z., and Palmer, M. 1994. Verbs semantics and lexi-
cal selection. In Proceedings of the 32nd annual meeting on
Association for Computational Linguistics, 133–138. Asso-
ciation for Computational Linguistics.

